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ABSTRACT

A complete potential based framework utilizing internal state variables is put forth
for the derivation of reversible and irreversible constitutive equations. In this framework
the existence of the total (integrated) form of either the (Helmholtz) free energy or the
&Gibbs) complementary free energy are assumed a priori. Two options for describing the

ow and evolutionary equations are described, wherein option one (the fully coupled form)
is shown to be over restrictive while the second option (the decoupled formg provides
significant flexibility. As a consequence of the decoupled form a new operator, i.e. the
Compliance operator, is defined which provides a link between the assumed Gibb’s and
complementary dissipation potential and ensures a number of desirable numerical features,
for example the symmetry of the resulting consistent tangent stiffness matrix. An
important conclusion reached, is that although many theories in the literature do not
conform to the general potential framework outlined, it is still possible in some cases, by
slight modifications of the employed forms, to restore the complete potential structure.

1.0 INTRODUCTION

In general, the inelasticity exhibited by the thermomechanical response of
engineering materials is related to irreversible thermodynamic processes. These involve
energy dissipations and material stiffness variations due to physical changes in the
microstructure. Consequently, thermodynamic arguments have often been utilized as a
foundation on which phenomenological constitutive laws may be formulated, i.e., the
so—called internal variable formalism [1-8]. Material descriptions such as elastoplastic,
viscoplastic, continuum—based damage, etc., (all falling into this framework) have been
subjects of extensive research over the years [8-21].

From a strict mathematical standpoint, however, the "thermodynamic —
admissibility" restriction associated with the dissipative mechanisms underlying the above
material models reduce to the well-known (local) Clausius—Duhem or dissipation
inequality [1,2]. Indeed, this is the form that is typically employed in discussing the general
structure of the "thermodynamically —based" constitutive equations developed [1-5,8,13);
whereby the mathematical constructs such as the flow or dissipation potential and the
attendant normality/generalized normality relations, i.e., the 1 — form (6,8,9,15—17,20,22]



are introduced solely for convenience in satisfying the above constraints based on simple
properties of non—negativeness and convezity of these functions. We emphasize, however,
that such forms do not presuppose, or automatically imply, the existence of the total
(integrated) forms of the associated thermodynamic potentials ; e.g. the (Helmholtz) free
energy, or the (Gibbs) complementary free energy. When the latter are utilized a priori,
the corresponding formulations will be described as exhibiting a complete potential — based
structure; on the other hand, those derived from an assumed Q—form are referred to as
incomplete potential—based models.

The (complete) potential-based class of inelastic constitutive equations possess a
number of distinct and important attributes, from both a theoretical as well as
computational standpoint. First, they constitute the cornerstone of numerous regularity
properties and bounding (or limit) theorems in plasticity and viscoplasticity [22—26].
Secondly, they result in a sufficiently general variational structure, whose properties can be
exploited to derive a number of useful material conservation laws [27—29]. Thirdly, on the
numerical side, the discrete form of this same variational structure is of great advantage in
the development of efficient algorithms for finite element implementation, e.g.,
symmetry—preserving material tangent stiffness operators are easily obtained in implicit
solution schemes [30—35]. Finally, this complete potential based framework conveniently
lends itself to intelligent application of symbolic manipulation systems which facilitate the
construction, implementation and analysis of new deformation and damage models [36,37].

With the above background in mind, our objective is to study the general form, and
the ensuing restrictions imposed by a complete potential—based viscoplastic formulation, in
terms of the Gibb’s thermodynamic potential, particularly in regard to several of the
presently used forms of the flow and evolutionary laws. It appears that although many of
these theories [e.g. 5,6,10,15—18] do not conform to the general potential framework
outlined, it is still possible in some cases, by slight modifications of the employed forms, to
restore the complete potential structure. However, the question still remains as to whether
these modifications will significantly affect the predictive capabilities achieved by the
original forms. This is not addressed here, but will be addressed in a subsequent paper
[38].

2.0 THEORETICAL FRAMEWORK

We begin by summarizing the basic thermodynamic equations governing the
thermo—mechanical behavior of an initially isotropic material element. An assumed
expression for the Gibb’s thermodynamic potential function [1-3] in terms of a number of
state and internal variables characterizing the changing internal structure of the material,



is taken. For conciseness, the discussion is limited to the case of small deformations, in
which the initial state is assumed to be stress free throughout. Also a cartesian reference
frame and index notation (with summation implied on repeated roman subscripts) is
utilized. It is noticed that all subsequent equations and discussions can be equivalently
rephrased, using appropriate Legendre transformations, in terms of the (Helmholtz) free
energy and the associated complementary variables.

In its volumetric differential form, the Gibb’s thermodynamic potential
G(aij,a ,T), can be written as follows [2,25]:

where S denotes the entropy, ag the internal state variables, A , the thermodynamic
affinities corresponding to a, (where # = 1,..N and the tensorial character of these internal
variables will be defined in the particular context), € the total strain and %; the cauchy
stress tensor. It follows from equation (1) then that

e = (total strain) (2)
J 3aij
—0G
S = entropy) 3
T ( (3)
and
—0G :
A, = affinity 4
(s Tl “

are defined as the equations of state [8,39] and 0, T, and ag are the "force—like"
thermodynamic state variables while eij’ S,and A 5 are the conjugate "displacement—like"
variables.

Now considering the following general form for the Gibb’s potential:

G= G(aij,a ,T)

where initially no restrictions are imposed on the functional dependence other than as
declared above. The most general expression for the total strain rate can then be obtained



by differentiating equation (2). That is

e.. (s {
i~ 97 79.. Bs 05" Vo, da, o, 0T
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With the above in mind, two options are actually available for describing the flow
and evolutionary equations. The first option assumes a fully coupled form, i.e., one in
which the irreversible strain rate is intimately linked to the thermodynamic internal state,
hence its functional dependence (evolution) is completely defined once G is assumed. The
second option is a decoupled Gibb’s form, in which the selected internal state variables are
grouped a priori by separation of the inelastic strain as an independent state parameter
and suppressing all stress dependency of the remaining associated internal state groups in
the selected G function. Both of these options are described separately, below.

2.1 Fully Coupled Form
Consider the following coupled form for the Gibb’s potential:

G = E(o;) + M(0;;,ag) + H(ag) - %(T) - “kk 7(T-T,) (6)
3

where initially certain restrictions (coming from the affinities A B discussed subsequently)
are imposed on the functions E and M, T is a reference temperature and 7 is the
volumetric coefficient of thermal expa.ns1on Substitution of equations (4) and (6) into (5)
yields a particular expression for the total strain rate, ie.,

—8%E ——62M . A
e.=| lo.. +1 ﬂ]a +6 yT (7)
1 Baijaars oo, j 8

in which the above three terms may be identified as the reversible, irreversible and thermal
expansion components of the total strain rate, respectively. Thus ,

. _tR OI IT
e;= €t G5 € (8)



with

2

1} = [—6 ‘B +-9°M 1o, (reversible) (9)

J Baijaas 60i_]aars
-1 dA . - : .

.. = bl 10
€ij [T‘;iﬂj] ag (irreversible) (10)
T _ .
€= 6ij 7T (thermal) (11)

Furthermore expressions for the entropy and "displacement—like" affinities can be
obtained from equations (3), (4), and (6), i.e.,

s= 92 L oy 4 (12)
9T 3
and
— oM JH
A= - (13)
A Ja

s 99

thus implying the functional dependence of S = S(’I‘,akk) and A 5= A ﬂ( ars’an)'
Consequently, in its present coupled form certain restrictions now apply to the functions M
and H in order for A ; to have the above functional dependence. For instance, M must
always be at least linear in stress, and furthermore, given an H that is at least quadratic in
internal state will require that M be at least linear in internal state aﬁ; alternatively given
an H that is assumed to be linear (or zero) in internal state requires that M be at least
quadratic in internal state.

Now assuming the existence of a dissipation potential, o A ﬁ,S), the rate of change
of the internal state variables (aﬂ) can be expressed in terms of their corresponding
affinities. That is, the evolution or kinetic law becomes:

v = 0¥ 14
@y m? (14)

Furthermore, considering equations (12) and (13), it is clear that a correspondence between

¢ and a complementary dissipation potential Q = Q(aij,a ,T) exist, since ¢ is an implicit



function of %; and ag through A B ie., p=p(A4o ﬂ( ,aﬁ) T). Note defining the dependence
of Q on 9ip0g and T does not preclude the mcluslon (or dependence) of the assocmted

thermodynamlc affinities as parameters (as opposed to "true" variables), e.g. A gor d [cf.
5,8].

Here, in the fully coupled option, we make use of equations (10), (13) and (14)
directly to obtain expressions for the flow, i.e.,

I dA _0dp 15
= Uljlaﬂ 7, (15)

and evolutionary laws , cf. equation (14),

a, = 9%
g

where A 3 is obtained from equation (13). Note that A 8 and thus the functional
dependence of ¢ is completely defined once the functions M and H are assumed.

It is evident that the present form is too restrictive (see Onat and Leckie [6] for a
number of examples), in that it requires proportionality between the inelastic strain and
the rate of change of internal state to maintain consistency between the two expressions for
inelastic strain rates in equation (10) and (15).

2.2 Decoupled Form

Here, a less restrictive, yet equivalent, decoupled form can be derived by assuming a
form a priori for the Gibb’s potential whereby the inelastic strain is assumed to be an
independent parameter (and not an internal state variable) with two other groupings of
internal "force-like" state variables associated with irreversibility, i.e., ag which are
associated with the material inelasticity and D , which are associated with the degradation
of the material due to some damage mechanisms [8,12,13]. As an example, one may write

G =E(q;) + @ +M(aJ ﬁ)+H(aﬂ)—Z(T)—”kk'y(T—To) (16)

%iji
3

Where, once again, differentiating equation (2) with the above assumed form for G, an

expression defining the total strain rate can be obtained, i.e.,
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e T Ma 1o — &+ [ 208 1Dg+ 59T (17)
in which the above four terms may be identified as the reversible, inelastic, irreversible and
thermal expansion components of the total strain rate, respectively. Note that A pare the
"displacement—like" thermodynamic affinities associated with the internal material

degradation "force—like" variables D g Thus,

- _'R ,1 D T
eij_fij+eij+fij+6ij (18)
with
2 2 )
RJ= [9°E o™ ] s (reversible) (19)
dao; i do., do, i 90
e]l) = | aAﬁ] D 8 (irreversible) (20)
] do..
1)
el = 6. 4T (thermal) (21)
ij= %"

and ef (inelastic strain rate) is to be defined separately, subsequently. Note also that the
definition of A 4 follows that of equation (13) (with the suppression of H and equivalance of
ag and D ﬂ) and the evolution of D, that of equation (14) given an assumed form of a
damage dissipation potential ¥ = ¥(A ﬂ)‘ Various coupled and decoupled deformation and
damage formulations may thus be investigated using this framework.

To provide a framework for the definition of the inelastic strain rate ( %j) and
ensure the thermodynamic admissibility of it, the requirement that the Clausius— Duhem
or dissipation inequality be satisfied is introduced. That is,

thus differentiating once with respect to stress (aij) and once with respect to internal state,
gives:



-1 _0Q
= o (23)
1)
and
A -0
A, = 24
P~ Fay 9

Returning to equation (4) and differentiating with respect to time, an expression for
the rate of change of the affinities A ; in terms of the rate of change of the corresponding
internal state can be obtained, i.e.,

Aﬁ = [Qg a, (25)
where
—0*H
U= a7, (26)

given the assumed form of the Gibb’s potential in equation (16). Due to the fact that the
operator Q relates the "force-like" state variables to the "displacement—like" variables and
is completely defined once a Gibb’s potential is chosen, this operator will be defined as the
Compliance operator henceforth. Furthermore it is interesting to note that this operator
provides information relative to the curvature of the Gibb’s potential as well as the
relaxation trajectories in the associated state space [40].

Now substituting equation (25) into (24) and rearranging terms , gives,

. -1, 9Q
N 27
&= -1Qg) o, (27)

which defines the evolution of internal state. Thus equations (23) and (27) represent the
flow and evolutionary laws, respectively, for an assumed {2 = Q(ai @ ﬁ’T) and Gibb’s
potential wherein both potentials are directly linked through the internal state variables
@, It is interesting to note that only under special conditions (e.g., uniaxial states of

stress and scalar internal state variables) does equation (27) reduce to those discussed by
Ponter and Ponter and Leckie [20,22,25).



Clearly, this framework provides a structure in which the flow and evolution laws
are associative, satisfying equation (26) explicitly, and are fully integrable . Furthermore,
this option provides significant freedom (i.e., dQ > 0) in the definition of the
complementary dissipation potential so that various complete potential based formulations
can be expressed. The price for this additional freedom, however, is in general the
non—trivial inversion of the compliance operator.

3.0 DISCUSSION OF SPECIAL CASES

Equations (14) and (15), and, (23) and (27), provide the general thermodynamic
framework whereby most, if not all, potential based models with associated flow and
evolutionary laws can be derived. To illustrate this a number of classical theories as well
as a few nonclassical forms will be recovered, depending of course upon the assumed form
for the Gibb’s potential, i.e., functions E, M, and H.

3.1 Elasticity
Here, if E is assumed to be quadratic in stress, i.e.,

-1

E= 5Cq %% (28)

and M is assumed to be a separable function linear in stress and internal state (where, aﬂ is
taken as a symmetric second order tensor),

M= L(ars)P(aﬂ)
= Ops%s (29)

and H is taken as zero, then from equation (9);
R _
;= Cijrsars (30)

the classical form describing generalized Hooke’s Law [41] is obtained. If an expression
describing nonlinear elastic behavior is desired any scalar form linear or nonlinear in stress
for E and/or M can be chosen.



3.2 Coupled Damage Elasticity

If ag is associated with material degradation, i.e., "damage", classical forms of an
elastically damaging material can be recovered. Here, E is assumed as before to be
quadratic in stress (see equation (28)) while M and H are taken as follows:

o
M="5 ICn %% (31)

and

H=h & (32)

where the internal state variable (aﬁz 9) is the scalar "force-like" damage affinity.
Now calculating the total strain rate, as given in equation (7), we find

€= [1-4 Cijrs Trs ~ Cijrs s 2+ 5ij 7T (33)
wherein the term [1— 4 Cij - is the classical effective compliance tensor [8] , and
o @ is the irreversible strain measure. Note that the "displacement—like" affinity

Ci jrs 18
(equation (13)) is

1 n—1
and that if n=1, we see that the corresponding affinity is the elastic strain energy. Now
with regard to the evolution of & equation (14) gives,

7 =2(D) (35)

3.3 Viscoplasticity

In order to illustrate the potential of this framework for both the coupled and
decoupled option, two specific, yet general, J, (second invariant of the deviatoric stress)
forms of the Gibb’s potential shall be assumed. The only difference between these two sets
is in the assumed dependence of the M(O‘i j’aﬂ) function, where in case I, M is assumed
separable and in case II, non—separable. Thus,

10



2 Crskl Ors %kl

H=-A &

,6 =1/2 aijaij

with

and in Case I
M= L(Srs)P(aﬂ)

= —'Bsrs ars”@
and in Case II
_ \4
M=BIJj ,ﬂl‘
with
Jy=1/23;%;
where
ij = S~ %

_ 1
Si5= 035~ 5 Tk

(36)

(37)

(38)

Note that in the above assumed forms for M and H, the internal state variable (a )

is taken as a second—order and traceless tensor, and is typically identified as the back stress

tensor and associated with kinematic like hardening [6,10,15].

3.3.1 Coupled Form

Considering the coupled form, and the above definitions, the affinity Aij takes on

the form, in:

A..
1)
where

and

Case I

11

(39)



and in,
Case I

3. .
Ay=-BIy Aluij—v—d] +Am 2 la. (40)
J 2 ’5 ‘]2 2 1]

while the flow and evolutionary laws come directly from equations (15) and (14),
respectively, given an assumed dissipation potential . It is interesting to note that in case
I the typical effective stress definition found in the literature is recovered (within a factor
c) when n=0, m=1, and A=B, that is,

Ay = oSy oy (41)

Furthermore, note that for the above assumed forms, the Gibb’s potential is a
homogeneous quadratic function which is known to be convex.
For convenience, the dissipation potential ¢ is assumed to have the following form;

= ff(F(Aij))dF (42)

where F is a scalar function, e.g., F = A2/ n2 —1and A2 = % Aiinj’ whereby it is easily
shown that

dp _
‘6%1 =F I‘1'skl Ars

0
oy = b

where

F = {(F)/x?
and for case I,

Prekt = ¢ Irsia

or in case II,

12
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_ v ISr Oy,
Frskl—_BJ2”‘g ; u—%kl —v J]
2 A 2
rskl 2rs Ekh
—v| ] ]}
Iy Io

with Irskl defined to be 6rk6 1, such that the flow and evolutionary laws become,

~FT (43)

181 J

-1 .1
U I11:s1_] ij (44)
respectively.
After examining the above flow and evolution laws one might observe that only a
purely hardening material may be modeled with the above complete coupled form, since in

order for steady state (a = 0) to occur the ef must be also zero. Thus no secondary
creep rate could be predicted. However, as shown in the following section, if one assumes a
decoupled but consistent form, a complete potential based, yet general, form can still be
obtained (e.g., one with a Bailey—Orwan [20] competing mechanism in its evolution law).

3.3.2 Decoupled Form
Now considering a decoupled form, we can assume the complementary dissipation
potential to take the form

Q= ff(F(Sij))dF + f 8(G(a))dG (45)

where F and G are scalar functions (e.g., F = Jof k2 —1and G = Al nz, see [40]), thus it
is easily shown that

a0
aa—m:”kl
S%U —{a— - Her 8(G) o}
where
F = {(F) /2

13



so that the flow (equation (23)) and evolutionary (equation (27)) laws become,

J =F3, (46)
and
a0
M”JFQS (47)
= Qi) 02— 8(0) o)
IS
R
= (95 L —He28(0) o) (48)

respectively. Where with the above definition for H (see, equation (36)) the compliance
operator is defined as

—3°H

Quy: =
klij Baklaaij

Quij = AmAy~ [(7)0‘1(1“ + il (49)
with
L = %dp

Thus considering the case when m=1, the classically (i.e., first term below) assumed linear
kinematic evolutionary law [8] can be recovered, i.e.,

b= A {d - B 6(0) o) (50)

in which the evolution of back stress is proportional to the evolution of the irreversible
strain rate minus a thermal recovery term. Clearly, this analytical form allows for steady

state (i.e., a = = 0) without the added requirement that the inelastic strain be zero.
Considering the more general case given above , i.e., m>1, the commonly assumed

evolution equation for the back stress (a ) containing a strain induced recovery term can

be recovered under a multiaxial state of stress However, as opposed to the conventional

approach in which an arbitrary function [42] is multiplied by || el || the present form of the
thermodynamically based derivation is seen to lead to the 1nc1us1on of a specific scaling

14



factor 7 (i.e., the projected back stress length) for that same term (see equations below).
This can be seen by substituting in the values (cf. equation(49)) for the compliance
operator into equation (48), that is,

6. = Ly (m-1) -1,.I1 R

where q=Am }‘;}—l

An important and not trivial next step, is the inversion [32,42] of the compliance
operator. This inversion may not always be available in analytical form, although in the
above case it is and equation (51) becomes,

A

. _ 1 m .1 R
%j =—q Mtij ~ 7 %% Hea — w2 8(6) o) (52)
where m = (m—1
m...
Realizing that
I -1
€ = Dl el
it is easily shown that
. 1 .1 .1 R -
%= q [fij -7 aij”fkl” — 2 (1-2m) g(G) aij] (53)
where
N=mM_ 1,0
E

Therefore the fully thermodynamically consistent evolutionary law associated with a
complementary dissipation potential whose functional dependence is taken as in equation
(36) is equation (53).

Consequently, comparing equation (53) with similar forms found in the literature
[8,10,17,18,19] one can see a difference in the leading term typically taken as a constant
and here shown to be a function of the back stress, i.e., (1/q) and the lack of an

appropriate scaling factor in front of the strain induced recovery term, i.e., aij” .eij”' The

15



implications of this scaling factor 7 on the response prediction due to multiaxial states of
stress is anticipated to be significant but still remains to be investigated. These differences
are related to the fact that here the flow and evolutionary laws are associative and directly
linked to the Gibb’s potential, through the compliance operator. Another distinction is the
resulting desirable numerical features, for example the symmetry in the consistent tangent
stiffness matrix produced by the present form, equation (52), and discussed at length in
[32]. The disappearance of the strain induced recovery term under a uniaxial state of
stress, thus implying no detraction from the uniaxial predictive capability of the model,
can be viewed as a price one pays for this symmetry. Inclusion, however, of both a uniaxial
as well as multiaxial strain induced recovery term can be achieved by a modification of the
assumed form of the present dissipation potential [8,38], thereby suggesting a theory with
not only the desired uniaxial predictive capability but all of the theoretical and numerical
niceties discussed above as well.

Finally, examining the form proposed by Robinson [15,16], it is clear that this form
is merely a truncation of the strain induced recovery term discussed above. Thus, this
form as well can easily be modified to be consistent with a complete potential framework
by the multiplication of a fourth order tensor (i.e., the inverse of the compliance operator),
that is

.1 .1_R
&= =g~ Ny e B2 8(C) o3} (54)

where

-~

_ _ m
Nijig = [lijia =7 %%
without altering any of its uniaxial predictive capabilities.

4.0 CONCLUSION

A complete potential based framework utilizing internal state variables has been
presented for the derivation of reversible and irreversible constitutive equations. This
framework assumes the existence of the total (integrated) form of either the (Helmholtz)
free energy or the (Gibbs) complementary free energy a priori. Two options for describing
the flow and evolutionary equations have been discussed; wherein the fully coupled option
the irreversible strain rate is intimately linked to the thermodynamic internal state, hence
its functional dependence is completely defined once the free energy is assumed. This

16



option was shown to be over restrictive. The second option, the decoupled form, provides
significant flexibility since the inelastic strain is taken as an independent state parameter.
Here the definition of the inelastic strain rate requires the identification of a
complementary dissipation potential. As a consequence of the decoupled form a new
operator, i.e. the Compliance operator, is defined which provides a link between the
assumed Gibb’s and complementary dissipation potential and ensures a number of desirable
theoretical and numerical features. It has been shown that although many theories in the
literature do not conform to the general potential framework outlined, it is still possible in
some cases, by slight modifications of the employed forms, to restore the complete potential
structure.
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